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and R, are the ionic radii.

“Minkiewicz et al. [V. J. Minkiewicz, Yasuhiko Fujii,
and Yasusada Yamada, J. Phys. Soc. Japan 28, 443
(1970)] found KMnFj to be of symmetry I4/mcm or
Ibmm at the temperature range 125 <7 <180 °K.

Our data, on the other hand, are inconsistent with the
I lattice throughout the temperature range 4.2<T
<272°K,

1 APRIL 1971

Energy Transport at Finite Temperatures in Isotropic Magnetic Chains with S =

D. A. Krueger
Department of Physics, Colovado State University, Fort Collins, Colorado 80521

(Received 12 October 1970)

Energy transport is shown to be nondiffusive at finite temperatures in a magnetic chain of
spin-3 particles with isotropic nearest-neighbor Heisenberg interactions in zero external
field. In a uniform magnetic field, the Zeeman energy ensures that energy diffusion is re-
established at all temperatures if spin diffusion is present. At infinite temperatures the in-
troduction of weak next-nearest-neighbor interactions also reestablishes energy diffusion. We
use the Mori-Kawasaki expression for the diffusion constant in terms of the second and fourth

moments of the time Fourier transform of the relaxation function.

Investigation of the sixth

moment indicates that the time derivative of the energy density exhibits diffusive behavior even

though the energy density does not.

It has been shown' that, at infinite temperatures,
energy transport is nondiffusive in an isotropic
magnetic chain of spins with S =3 and zero exter-
nal field. In this paper we show it is true at all
temperatures if one uses an approximate expres-
sion for the inverse decay time based on the
second and fourth moments of the energy relaxation

function.
The Hamiltonian for our system is

N-l_’ - N-l
H==27278, Sy +32 SF
n=0

n=0
=H,+H, , (1)

where H, is the exchange energy and H, is the
Zeeman energy. The relevant relaxation function
for energy transport at finite temperature is

R(k,t)={Rh(R,t), h(=F, 0} {n(R,0), h(-F, 0},
)

where h(k,t) is the Fourier transform of the energy
density

h(k,t)=2,e* " h, (t) ,
hat) = = T[8,(1) - 8,01(8) +5,(0) - 5,..(0))
+3CSE() , @3)
{A,B} = [Jar (e Ae™B) - 6(A) (B),
and
(0)=Tre?*40/Tre*¥,

The lattice constant is a and B= (k5T )™ where kp

is Boltzmann’s constant and T is the temperature.
If diffusion is present, then for small %2 the time
dependence of R(%,t) is approximately?®

R(k,t)=exp[- || T(B)]. (4)

As discussed in Ref. 3, an approximate expres-
sion for (k) is

T(k)=[ n/2]"2My( k) My(R)/My(R)]2, (5)
where on
Man(k){(} :7> R(k,ﬁl=0 . 6)

Energy diffusion is said to occur when the aver-
age of the energy density %(r, ¢), obeys a diffusion
equation for long-wavelength disturbances

37 - DV
of h(r,t)=DVeh(r,t) .

This implies that I'(k) is Dk2 for small 2. D is the
diffusion constant. For zero external field, we
shall show M,(%) = k2 a(k) and M,(k)=k*b(k) for
small 2. In addition, a(O) is shown to be finite at
infinite temperatures, and b(0) is proved to be
finite for all temperatures. Thus one expects I
to be proportional to %2 for small % in contrast to
the %% dependence for diffusion,

Convenient expressions for the required mo-
ments are
My(k)=C(k) D e {[H, [H,h,]], ho} , (M

M4(k)=c(k)-12n e‘ka"{[Hy [H9hn]]9[H5 [Hyh()]]}(é)
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and Next let us apply a uniform magnetic field
C(B)= 5, ™ {1 ho} ©) (3¢ # 0). The commutators in ('7) and (8) become
= nsltoS o
’ . [H,[H,h,]] =P, +%Q, , (19)
We use periodic boundary conditions so that
Sxen=Sn where

First consider the case with zero external field
(3¢=0). The commutators have been calculated by
Redfield and Yu.* For the spin-3 chain with
nearest-neighbor interactions they take the form

(#,,[#,,m]]=P,, (10)
where

P,=2J3 T, ~ Ty~ Tpp+Tns} , (11)
with

T, =§ml'§n+2+2§nx§ml'§mzx-§m3 . (12)

From Eq. (11) we see that P(2) vanishes at least
as fast as k2 for % small. Substituting these into
M, and M, we have (3€=0)

My(k)=25C(k) J*sin®(ka/2) cos?(ka/2)

X, e*{T,. 5 .5}, (13)
M,(k)=28C(R)* J®sin(ka/2) cos?(ka/2)
XL e {1, T}, (14)
C(k)=22J2cos(ka/2) 2, " {§,-8,.1,5- 5} ,
(15)
where
{A,B}' ={A, B} +8(A4)(B).
In the infinite temperature limit
C(k)~$J%B cos®(ka/2) ,
My(k)~ 8J2sin%(ka/2) , (16)
My(%)~128J"*sin*(ka/2) , (17)

in agreement with Ref, 1,
In M(%) appears a quantity of the form

E" oihan {A,,, AO}’ :N'l{A(k) ,A(k)*}' . (18)

Using the method of Mermin and Wagner? it is
straightforward to show that for finite temperatures
{A,A*} 2 0 with the equality if and only if A=0.°

In our case A(%)# 0. Furthermore C(0O) is the
specific heat which will be greater than zero. Thus,
M,(k) vanishes as &* for all temperatures. Dif-
fusion requires that I'(%) vanish as %2 which to-
gether with M,(2)~k%* and Eq. (5) requires that
My(%) vanish as #%3. This nonanalytic behavior

as a function of 2 seems quite unlikely at any tem-
perature for systems with short-range interactions.
We conclude that energy transport by diffusion

in zero external field is impossible at all temper-
atures if we use moments [ Eq. (5)] to calculate
the damping constant I'(%).

Qn:[ny[Hausn‘]]-

Again using expressions derived by Redfield and
Yu* we have

@ =2Vy= Vo1 = Vau + U= Uy, (20)
where

V,=2J255(1+28,,- S,.,) (21)
and

Up=4 ISz~ 558, B - (22)

From (20) we see that Q(%) vanishes at least as
fast as k.
In M (%) we will have

{P,+3Q,, P+3 Qo) ={P,, P}’ +3{Q,, Po}
+3C{Pm QO}’ +3C2{Qn; Qo}’ . (23)

Thus, the Fourier transform of the terms of (23)

will go to zero at least as fast as %, #°, %, and

k%, respectively. The contribution of the final term

of (23) may be written for small % as

3220, e {Q,, @} ~32r%a?{U(k=0),U(k=0)"} .
(24)

Since U(k=0)+#0, we see M,(k) vanishes as #? for

all temperatures.
In M,(%) we will have

{Pn“':}ch {]+3CSO‘}':{PH! B}’+3C{P”,Sf]}'
+3{Qq, k5 } +32{Q,, S5} . (25)

From (11) the Fourier transform of the first two
terms in (25) vanish at least as fast as #2. From
(20)-(22) we can also show that

2ne™{Q, niY =4sin®(ka/2)N{V(E), h*(-k)}’
- 16J%sinka2s, sin(kan){S%,,8, - Spy , 505,V
(26)
and
2i,e*{Q, S5} = 4sin®(ka/2)N"{ V(k), S*(- )}
+ (1= )8 2% sin (kan){S%,, 8, « Sy , S5} .
(27)
Thus, My(k)=f(k)%%and M,(k)=F,(k)%k?, where

f4(0)is finite for all temperatures. At infinite
temperature

Cc(0)=38{3J%+3¢?} | (28a)
 f(0)=2427%, (28b)
F4(0)=4a?J*3e3(3 72 +302) | (28¢c)
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so I'(k) =Dz k2 which indicates a diffusive mode of
energy transport as noted by Huber’ with

Dp=vVm a?J{3J%13c2} 2 5c""

We have no reason to expect f,(0) to vanish at
finite temperatures, and so we expect energy dif-
fusion to occur at all temperatures in a uniform
external field.

To compare D atinfinite temperatures with the spin
diffusion constant D we note that D is given by I' /%%
where I' is given by Eq. (5) if one replaces &, by
S%in Eqs. (7)-(9). At infinite temperatures one
finds

C%(k)-B/4 , (29a)
M5 (k)~2R%%J2 (29b)
M5 (k)~4R%2J* (29¢)

Thus, we have Dg =v1 a?J and
Dp=Dg{3J%+35c2 W25 2Dy .

We see that D, approaches Dg for large magnetic
fields, as we expect, and for small fields Dy > Dg .

Next, we consider the effects of introducing
next-nearest-neighbor interactions. The Hamil-
tonian is

HZ—Z Jln-én.-él .

Iyn
For arbitrary J,,=J,,; satisfying J;;=0 and arbi-
trary S, we find

[H,[B,1,]1=22 @, m,7, ){mpdsrdy( = 6,)

my L7
+Jp I 1 m a- 5mn) _JannrJln(l - 617)
=J Janlm(1 - Gnl)} s (30)

where

-

(n, m, 7, 1)=8,X8,," §,><§,+§,><§,- S,,Xé,,,
and where
By==20,d7,8;* S, .

This generalizes the result of Redfield and Yu? to
general S and to lattices which have three spins
which are mutually near neighbors. For a chain
we have

J1n=I (81,4 1+ 61,5 1)+ (01, neg + 01,n-2)-
From (8) we see that for small &

M) =CO) ' REN" {2, n A, Zum A, +0k),
where A,=[H, H, h,]]. For a spin-} chain at infinite
temperatures, we find to lowest order in J’ and &

M,(k)~ 24T ¥ K2a? |
which implies

- 1/aJ2
F(k)‘(e) H

k2 a?.
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Thus, the next-nearest-neighbor interactions re-
establishes energy diffusion if nearest-neighbor
interactions are present.. On the other hand, if
J=0and J’ #0, then energy diffusion is not possible.
This follows because a chain with interactions be-
tween mth nearest neighbors is isomorphic to a
chain (or a collection of chains which do not inter-
act with each other) with nearest-neighbor inter-
actions which was discussed earlier.

Let us now return to the question of self-consis-
tency in the use of Eq. (5) for the diffusion con-
stant.

Mori and Kawasaki’s derivation assumes that if
diffusion exists, then, because of kinematic slowing
down, R(k,t) decays more slowly than the relaxa-
tion function for 7 (&, 1),

Fle, ) ={h (k, t), h (~ &, O)} {it (k, 0), o (~ R, 0>}'1(-
31)

They also assume that the time Fourier transform
of this, F(k, w), is a Gaussian,

Folk, w)={2r( w?®)}*/? exp{- 0. 50X w?) ™"},

where

(32)

(" =" dww" Flb, 0)=My,o/M; .

When diffusion is present M,~ k® and M,~k?, so
the ratio of a characteristic time of F(#, ), (w?)~'/?,
to a characteristic time of R(k,¢), I, is

te/te~ M2/ M~ B4/ RE~RE .

Thus, tp <t for small £ and the assumptions are
self-consistent. On the other hand, for the spin-3
chain with no external field we have

te/te~ kYR~ 1

and the characteristic times are comparable, and
thus R(%, t) does not decay more slowly then F(k, ¢)
and we have an inconsistency. This is another way .
of saying that energy diffusion does not exist.

One may generalize the form taken for F(k, w)
by expanding it in a Gram-Charlier series®

Flk, w)=Fgk, w) {1 +CHy(x) +-- -}, (33)
where
Hyx)=x"-6+%+3,
with
x=w{(w?)/?
and
4
c4=% {5%%5 -»1% . (34)

Now (w*) requires a knowledge of Mg. We find,
for small % and all temperatures,

614
My(e)~ -2%’5%;14— Y®), Y&y, (35)
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where

Yn=J§nXSn#3' (Sn*l - sz) .

Thus, Mg(k)~ * for all temperatures. In the infin-
ite temperature limit Mg~ 47%%*. Thus, we con-
clude that C, diverges as k approaches zero. This
is another indication that energy diffusion does not
exist. So far we have used the Mori-Kawasaki ex-
pression for the diffusion constant. de Gennes®
arrived at a similar expression for I" by assuming
a cutoff Lorentzian form for the Fourier transform
of R(k, t):

R(k,w)=$ ;’g“% for ]wlis, (36a)
Rk, w)=0 for |w|>s . (36b)

From the condition R(%, #=0)=1 and expressions
for M, and M,, one may evaluate I" and s. If diffu-
sion occurs, M,~k?~ M, and one finds

p- Mg 1/2
Too 373 \ut,f
s={3m/M,}'"?,

where I'«<s. However, if M,<5.6M%, one can
show that the cutoff Lorentzian will not fit M, and
M, for real positive values of d, T, and s. At in-
finite temperatures in a spin-5 chain with nearest-
neighbor interaction, M, = 2M2 so the cutoff Lorent-
zian for R(k, w) is not possible.

A similar criterion for energy diffusion has been
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proposed by Bennett.!® The moment fluctuation
ratio

®R(k)=M2i{M, - ME?

becomes very small if diffusion is present andbe-
comes very large if a propagating mode is present.
For the spin- chain where M,~ k% and M,~k* the
ratio ®&(k) is independent of & for small & for all
temperatures. At infinite temperature ®&(¢)=1,
which again indicates that energy diffusion is not
present. Unless ®(k) is strongly temperature de-
pendent, one expects energy diffusion to be absent
at all temperatures bj this criterion also.

Finally it is worth noting thatfor the isotropic
spin-} chain we have M,~k?, M,~%*, and Mg~k*
for all temperatures. Thus, the relaxation function
for ’:l(k, t), that is, F(g,t), exhibits diffusive be-
havior and thus one may assume that the time
Fourier transform of {h(%, t), h(- &, 0)} is a
Gaussian.

Proceeding as before we find that if F(g, ¢)
=¢ 1T®  they

~ / /

(_ Ve My | M M
2) M \Mg{
At infinite temperatures we find T = 4J%%a%V 7.
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